
ARTIFICIAL INTELLIGENCE

LAB MANUAL

BALAJI INSTITUTE OF TECHNOLOGY AND SCIENCE

(AUTONOMOUS)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B.TECH. CSE Syllabus R22 Regulations

BALAJI INSTITUTE OF TECHNOLOGY & SCIENCE

(AUTONOMOUS)

22CS648PC: ARTIFICIAL INTELLIGENCE LAB (SYLLABUS)

Course Objectives:

 Become familiar with basic principles of AI toward problem solving,knowledge

representation,and learning.

Course Outcomes:

 Apply basic principles of AI in solutions that require problem solving,knowledge

representation,and learning.

List of Experiments:

Write a Program to Implement the following using Python.

1. BFS, DFS Search Strategy

2. Tic-Tac-Toe game

3. 8-Puzzle problem

4. Water-Jug problem

5. Travelling Salesman Problem

6. Tower of Hanoi

7. Monkey Banana Problem

8. AI Web Robot: Wayback Machine case study project

9. 8-Queens Problem

1. Write a program to implement the following

a) DFS.

b) BFS.

a) A Program to implement DFS

graph={

 'A':['B', 'C'],

 'B':['D','E'],

 'C':['F'],

 'D':[],

 'E':['F'],

 'F':[]

}

visited = set()

def dfs(visited, graph, node):

 if node not in visited:

 print(node,end="")

 visited.add(node)

 for neighbour in graph[node]:

 dfs(visited, graph, neighbour)

dfs(visited, graph, 'A')

output: ABDEFC

b) A program to implement BFS Algorithm

graph={

 'A':['B', 'C'],

 'B':['D','E'],

 'C':['F'],

 'D':[],

 'E':['F'],

 'F':[]

}

visited = []

queue = []

def bfs(visited, graph, node):

 visited.append(node)

 queue.append(node)

 while queue:

 s=queue.pop(0)

 print(s, end=" ")

 for neighbour in graph[s]:

 if neighbour not in visited:

 visited.append(neighbour)

 queue.append(neighbour)

bfs(visited, graph, 'A')

Output: ABCDEF

2. Write a program to implement Tic-Tac-Toe Game

Tic-Tac-Toe Game with 3 consecutive marks to win

def print_board(board):

 """Prints the Tic-Tac-Toe board."""

 for row in board:

 print(" | ".join(row))

 print("-" * 9)

def check_winner(board, player):

 """Checks if a player has won with 3 consecutive marks in a row, column, or diagonal."""

 # Check rows-horizontal and columns-vertical

 for i in range(3):

 if all(board[i][j] == player for j in range(3)) or all(board[j][i] == player for j in range(3)):

 return True

 # Check diagonals

 if all(board[i][i] == player for i in range(3)) or all(board[i][2 - i] == player for i in range(3)):

 return True

 return False

def is_draw(board):

 """Checks if the game is a draw."""

 if all(board[i][j] in ['X', 'O'] for i in range(3) for j in range(3)):

 return True

 else:

 return False

def get_move(board, player):

 """Gets a valid move from the player."""

 while True:

 try:

 move = int(input(f"Player {player}, enter your move (1-9): ")) - 1

 row, col = divmod(move, 3)

 if 0 <= move < 9 and board[row][col] == ' ':

 return row, col

 else:

 print("Invalid move! That spot is already taken.")

 except ValueError:

 print("Invalid input! Enter a number between 1 and 9.")

def play_game():

 """Main function to play the game."""

 board = [[' ' for _ in range(3)] for _ in range(3)]

 players = ['X', 'O']

 turn = 0

 print("Welcome to Tic-Tac-Toe!")

 print_board(board)

 while True:

 player = players[turn % 2]

 row, col = get_move(board, player)

 board[row][col] = player

 print_board(board)

 if check_winner(board, player):

 print(f"Player {player} wins!")

 break

 elif is_draw(board):

 print("It's a draw!")

 break

 turn = turn + 1

Run the game

play_game()

Output:

Welcome to Tic-Tac-Toe!

 | |

 | |

 | |

Player X, enter your move (1-9): 5

 | |

 | X |

 | |

Player O, enter your move (1-9): 1

O | |

 | X |

 | |

Player X, enter your move (1-9): 2

O | X |

 | X |

 | |

Player O, enter your move (1-9): 3

O | X | O

 | X |

 | |

Player X, enter your move (1-9): 8

O | X | O

 | X |

 | X |

Player X wins!

4. Write a program to implement 8 Puzzle Problem

from collections import deque

def is_solvable(board):

 flat_board = [num for row in board for num in row]

 inversions = sum(

 1 for i in range(len(flat_board)) for j in range(i + 1, len(flat_board))

 if flat_board[i] and flat_board[j] and flat_board[i] > flat_board[j]

)

 return inversions % 2 == 0

def get_neighbors(board):

 neighbors = []

 x, y = [(i, j) for i in range(3) for j in range(3) if board[i][j] == 0][0]

 directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]

 for dx, dy in directions:

 nx, ny = x + dx, y + dy

 if 0 <= nx < 3 and 0 <= ny < 3:

 new_board = [row[:] for row in board]

 new_board[x][y], new_board[nx][ny] = new_board[nx][ny], new_board[x][y]

 neighbors.append(new_board)

 return neighbors

def solve_puzzle(start_board):

 goal_state = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]

 queue = deque([(start_board, [])])

 visited = set()

 visited.add(tuple(map(tuple, start_board)))

 while queue:

 board, path = queue.popleft()

 if board == goal_state:

 return path + [board]

 for neighbor in get_neighbors(board):

 board_tuple = tuple(map(tuple, neighbor))

 if board_tuple not in visited:

 visited.add(board_tuple)

 queue.append((neighbor, path + [board]))

 return None

def print_puzzle_path(path):

 for step, board in enumerate(path):

 print(f"Step {step}:")

 for row in board:

 print(row)

 print()

Example usage

initial_state = [[1, 2, 5], [3, 4, 0], [6, 7, 8]]

if is_solvable(initial_state):

 solution_path = solve_puzzle(initial_state)

 if solution_path:

 print_puzzle_path(solution_path)

 else:

 print("No solution found.")

else:

 print("Puzzle is not solvable.")

Output:

Step 0:

[1, 2, 5]

[3, 4, 0]

[6, 7, 8]

Step 1:

[1, 2, 0]

[3, 4, 5]

[6, 7, 8]

Step 2:

[1, 0, 2]

[3, 4, 5]

[6, 7, 8]

Step 3:

[0, 1, 2]

[3, 4, 5]

[6, 7, 8]

4. Write a program to implement Water Jug Problem

#jug1 capacity = 5; jug2 cap = 3

def water_jug_problem(a, b, target):

 # Check if the target is achievable

 if target > max(a, b):

 print("Target is greater than both jug capacities")

 return False

 # Use a set to keep track of visited states (amount of water in each jug)

 visited = set()

 # Create a queue to simulate the process (state: (amount in jug 1, amount in jug 2))

 queue = [(0, 0)] # Start with both jugs empty

 while queue:

 jug1, jug2 = queue.pop(0)

 print(jug1,end=",")

 print(jug2)

 # If the target is reached, return True

 if jug1 == target or jug2 == target:

 return True

 # List all possib actions: fill jug1, fill jug2, empty jug1, empty jug2, transfer from jug1 to

jug2, and transfer from jug2 to jug1

 possible_states = [

 (a, jug2), # Fill jug1

 (jug1, b), # Fill jug2

 (0, jug2), # Empty jug1

 (jug1, 0), # Empty jug2

 (jug1 - min(jug1, b - jug2), jug2 + min(jug1, b - jug2)), # Transfer from jug1 to jug2

 (jug1 + min(jug2, a - jug1), jug2 - min(jug2, a - jug1)) # Transfer from jug2 to jug1

]

 # Check each new state, add it to the queue if it's not visited

 for state in possible_states:

 if state not in visited:

 visited.add(state)

 queue.append(state)

 return False

Example usage main program

a = 5 # Jug 1 capacity

b = 3 # Jug 2 capacity

target = 4 # Target amount of water

if water_jug_problem(a, b, target):

 print("Target is achievable!")

else:

 print("Target is not achievable.")

Output:

0,0

5,0

0,3

0,0

5,3

2,3

3,0

2,0

3,3

0,2

5,1

5,2

0,1

4,3

Target is achievable!

5. Write a program to implement Travelling Salesman Problem.

from itertools import permutations

Distance matrix representing the cost between cities

distance_matrix = [

 [0, 10, 15, 20], # Distances from city 0

 [10, 0, 35, 25], # Distances from city 1

 [15, 35, 0, 30], # Distances from city 2

 [20, 25, 30, 0] # Distances from city 3

]

num_cities = len(distance_matrix)

cities = list(range(num_cities)) # List of city indices

def calculate_route_distance(route):

 """Calculate the total distance of a given route."""

 total_distance = 0

 for i in range(len(route) - 1):

 total_distance += distance_matrix[route[i]][route[i + 1]]

 total_distance += distance_matrix[route[-1]][route[0]] # Returning to start

 return total_distance

Brute-force approach: Try all possible city orderings

min_distance = float('inf')

best_route = None

for perm in permutations(cities[1:]): # Fix city 0 as the start point

 route = (0,) + perm # Start from city 0

 dist = calculate_route_distance(route)

 if dist < min_distance:

 min_distance = dist

 best_route = route

Output the best route and distance

print("Best Route:", " -> ".join(map(str, best_route)), "-> 0")

print("Minimum Distance:", min_distance)

Output:

Best Route: 0 -> 1 -> 3 -> 2 -> 0

Minimum Distance: 80

6. Write a program to implement Towers of Hanoi

class Tower:

 def __init__(self):

 self.terminate = 1

 def printMove(self, source, destination):

 print("{} -> {}".format(source, destination))

 def move(self, disc, source, destination, auxiliary):

 if disc == self.terminate:

 self.printMove(source, destination)

 else:

 self.move(disc - 1, source, auxiliary, destination)

 self.move(1, source, destination, auxiliary)

 self.move(disc - 1, auxiliary, destination, source)

t = Tower();

t.move(3, 'A', 'B', 'C')

Output:

A -> B

A -> C

B -> C

A -> B

C -> A

C -> B

A -> B

7. Write a program to implement Monkey-Banana Problem

class MonkeyBananaBoxProblem:

 def __init__(self):

 # The monkey starts on the ground (height 0)

 self.monkey_height = 0

 # The box starts at position 0 and must be moved to the correct position under the banana

 self.box_position = 0

 # The banana is hanging at height 3

 self.banana_height = 3

 # The box is initially on the ground (height 1)

 self.box_height = 1

 def can_reach_banana(self):

 # The monkey can reach the banana if it is at or above the height of the banana

 return self.monkey_height >= self.banana_height

 def move_box(self):

 # Move the box closer to the banana (stop when it's directly under the banana)

 if self.box_position < self.banana_height - 1:

 self.box_position += 1

 print(f"Box moved to position: {self.box_position}")

 else:

 print("Box is positioned under the banana.")

 # Set the box height to be directly beneath the banana

 self.box_height = self.banana_height - 1

 def climb_box(self):

 # The monkey climbs the box, increasing its height by 1

 self.monkey_height = self.box_height + 1

 print(f"Monkey climbs the box! Current height: {self.monkey_height}")

 def attempt_to_get_banana(self):

 # Try to get the banana, check if the monkey is at or above the banana's height

 if self.can_reach_banana():

 print("Monkey has reached the banana and got it!")

 else:

 print("Monkey cannot reach the banana. Moving the box.")

 # Move the box toward the banana until it is positioned beneath it

 self.move_box()

 # Once the box is beneath the banana, the monkey climbs on top of it

 if self.box_position == self.banana_height - 1:

 self.climb_box()

 # After climbing, the monkey attempts to get the banana again

 self.attempt_to_get_banana()

Instantiate the problem

problem = MonkeyBananaBoxProblem()

Start the process of attempting to get the banana

problem.attempt_to_get_banana()

Output:

Monkey cannot reach the banana. Moving the box.

Box moved to position: 1

Monkey cannot reach the banana. Moving the box.

Box moved to position: 2

Monkey climbs the box! Current height: 2

Monkey cannot reach the banana. Moving the box.

Box is positioned under the banana.

Monkey climbs the box! Current height: 3

Monkey has reached the banana and got it!

8. Write a program to implement AI Web Robot: Wayback Machine Case Study

import requests

def get_wayback_snapshots(url):

 """

 Fetch archived snapshots of a given URL from the Wayback Machine.

 """

 base_url = "http://web.archive.org/cdx/search/cdx"

 params = {

 "url": url,

 "output": "json",

 "fl": "timestamp,original",

 "collapse": "timestamp",

 }

 try:

 response = requests.get(base_url, params=params)

 response.raise_for_status()

 data = response.json()

 if len(data) > 1:

 return data[1:] # Exclude the header row

 else:

 print("No archives found for this URL.")

 return []

 except requests.exceptions.RequestException as e:

 print("Error fetching data:", e)

 return []

def get_latest_archive(url):

 """

 Fetch the latest archived version of the given URL.

 """

 snapshots = get_wayback_snapshots(url)

 if snapshots:

 latest_snapshot = snapshots[-1] # Get the most recent entry

 timestamp, archived_url = latest_snapshot

 archived_url = f"http://web.archive.org/web/{timestamp}/{archived_url}"

 return archived_url

 else:

 return None

Script executes automatically

website_url = input("Enter the website URL to check Wayback Machine archives: ")

Fetch and display snapshots

snapshots = get_wayback_snapshots(website_url)

if snapshots:

 print("\nAvailable Snapshots:")

 for timestamp, original in snapshots[:5]: # Display first 5 snapshots

 print(f"Date: {timestamp[:4]}-{timestamp[4:6]}-{timestamp[6:8]}, Link:

http://web.archive.org/web/{timestamp}/{original}")

 # Get and display the latest archive

 latest_archive = get_latest_archive(website_url)

 if latest_archive:

 print("\nLatest Archived Version:", latest_archive)

 else:

 print("\nNo archived version found.")

Output:

Enter the website URL to check Wayback Machine archives: example.com

Available Snapshots:

Date: 1998-12-06, Link: http://web.archive.org/web/19981206052836/http://example.com

Date: 2001-02-08, Link: http://web.archive.org/web/20010208083200/http://example.com

Date: 2005-07-22, Link: http://web.archive.org/web/20050722041041/http://example.com

Latest Archived Version: http://web.archive.org/web/20240315000000/http://example.com

9. Write a program to implement 8 Queens Problem

N = 8 # Size of the chessboard (8x8)

Function to print the chessboard configuration

def print_board(board):

 for row in board:

 for col in row:

 print("Q " if col == 1 else ". ", end="")

 print()

Function to check if a queen can be placed at board[row][col]

def is_safe(board, row, col):

 # Check the column

 for i in range(row):

 if board[i][col] == 1:

 return False

 # Check the left diagonal

 for i, j in zip(range(row - 1, -1, -1), range(col - 1, -1, -1)):

 if board[i][j] == 1:

 return False

 # Check the right diagonal

 for i, j in zip(range(row - 1, -1, -1), range(col + 1, N)):

 if board[i][j] == 1:

 return False

 return True

Function to solve the 8-Queens problem using backtracking

def solve_n_queens(board, row):

 if row == N:

 return True # All queens are placed

 # Try placing a queen in each column of the current row

 for col in range(N):

 if is_safe(board, row, col):

 board[row][col] = 1 # Place the queen

 # Recur to place the next queen

 if solve_n_queens(board, row + 1):

 return True

 # If placing queen doesn't lead to a solution, backtrack

 board[row][col] = 0 # Remove the queen (backtrack)

 return False # If no queen can be placed in any column

Main function to solve the 8-Queens problem and print the solution

def main():

 board = [[0 for _ in range(N)] for _ in range(N)] # Initialize the chessboard with 0's

 if solve_n_queens(board, 0):

 print_board(board) # Print the solution

 else:

 print("Solution does not exist.")

main()

Output:

Q

. . . . Q . . .

. Q

. Q . .

. . Q

. Q .

. Q

. . . Q

Programs beyond the Syllabus

1. Write a program to find the solution for wampus world problem

import random

Define the 4x4 grid environment

size = 4

world = [[' ' for _ in range(size)] for _ in range(size)]

Place Wumpus, Pit, and Gold at random positions

def place_randomly(symbol):

 while True:

 x, y = random.randint(0, size - 1), random.randint(0, size - 1)

 if world[x][y] == ' ' and (x, y) != (0, 0): # Ensure agent's starting position is safe

 world[x][y] = symbol

 return (x, y)

wumpus_pos = place_randomly('W')

pit_pos = place_randomly('P')

gold_pos = place_randomly('G')

Agent starts at (0,0)

agent_x, agent_y = 0, 0

Function to display the world

def display_world():

 for row in world:

 print(' | '.join(row))

 print("\n")

Game loop

while True:

 print(f"Agent is at ({agent_x}, {agent_y})")

 # Check surroundings

 if (agent_x, agent_y) == wumpus_pos:

 print("Game Over! The Wumpus ate you!")

 break

 elif (agent_x, agent_y) == pit_pos:

 print("Game Over! You fell into a pit!")

 break

 elif (agent_x, agent_y) == gold_pos:

 print("Congratulations! You found the gold!")

 break

 # Move agent

 move = input("Move (W/A/S/D): ").upper()

 if move == 'W' and agent_x > 0:

 agent_x -= 1

 elif move == 'S' and agent_x < size - 1:

 agent_x += 1

 elif move == 'A' and agent_y > 0:

 agent_y -= 1

 elif move == 'D' and agent_y < size - 1:

 agent_y += 1

 else:

 print("Invalid move! Try again.")

 display_world()

Output:

Agent is at (0, 0)

Move (W/A/S/D): S

Agent is at (1, 0)

Move (W/A/S/D): D

Agent is at (1, 1)

Game Over! The Wumpus ate you!

2. Write a program to implement Hill Climbing Algorithm

import random

Define the function to maximize

def objective_function(x):

 return -(x - 3) ** 2 + 9 # A simple quadratic function

Hill Climbing Algorithm

def hill_climb(start_x, step_size=0.1, max_iterations=100):

 current_x = start_x # Start at a random point

 current_value = objective_function(current_x)

 for _ in range(max_iterations):

 # Generate neighbors (small changes in x)

 new_x = current_x + random.choice([-step_size, step_size])

 new_value = objective_function(new_x)

 # If the new value is better, move to new_x

 if new_value > current_value:

 current_x, current_value = new_x, new_value

 else:

 break # Stop if no improvement

 return current_x, current_value

Run Hill Climbing from a random starting point

start = random.uniform(0, 5) # Start in the range [0,5]

best_x, best_value = hill_climb(start)

Print the result

print(f"Starting Point: {start:.2f}")

print(f"Optimal x: {best_x:.2f}, Maximum Value: {best_value:.2f}")

Output:

Starting Point: 4.12

Optimal x: 3.00, Maximum Value: 9.00

3. Write a program to implement A* Algorithm

from queue import PriorityQueue

Define the grid (0 = free space, 1 = obstacle)

grid = [

 [0, 1, 0, 0, 0],

 [0, 1, 0, 1, 0],

 [0, 0, 0, 1, 0],

 [1, 1, 0, 1, 0],

 [0, 0, 0, 0, 0]

]

Define possible movements (up, down, left, right)

moves = [(0, 1), (1, 0), (0, -1), (-1, 0)]

Heuristic function (Manhattan Distance)

def heuristic(a, b):

 return abs(a[0] - b[0]) + abs(a[1] - b[1])

A* Algorithm

def astar(start, goal):

 open_set = PriorityQueue()

 open_set.put((0, start)) # (priority, node)

 came_from = {} # Store the path

 g_score = {start: 0} # Cost from start

 f_score = {start: heuristic(start, goal)} # Estimated total cost

 while not open_set.empty():

 _, current = open_set.get()

 if current == goal:

 # Reconstruct path

 path = []

 while current in came_from:

 path.append(current)

 current = came_from[current]

 path.append(start)

 return path[::-1] # Return reversed path

 # Explore neighbors

 for move in moves:

 neighbor = (current[0] + move[0], current[1] + move[1])

 # Check if neighbor is within bounds and not an obstacle

 if 0 <= neighbor[0] < len(grid) and 0 <= neighbor[1] < len(grid[0]) and

grid[neighbor[0]][neighbor[1]] == 0:

 temp_g_score = g_score[current] + 1

 if neighbor not in g_score or temp_g_score < g_score[neighbor]:

 g_score[neighbor] = temp_g_score

 f_score[neighbor] = temp_g_score + heuristic(neighbor, goal)

 open_set.put((f_score[neighbor], neighbor))

 came_from[neighbor] = current

 return None # No path found

Define start and goal positions

start = (0, 0)

goal = (4, 4)

Run A* Algorithm

path = astar(start, goal)

Print result

if path:

 print("Path found:", path)

else:

 print("No path found.")

Output:

Path found: [(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (3, 2), (4, 2), (4, 3), (4, 4)]

